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Abstract—Indentation experiments are now being used to study the elastic and plastic properties
of materials on a sub-micrometer scale. Simulations of these experiments have been performed using
the finite element method under the conditions of frictionless and completely adhesive contact and
within the context of incremental elasto-plasticity. Comparison of these simulated results with
experimental results demonstrates that the continuum based finite element approach has the capa-
bility to determine the load-depth response of a sub-micrometer indentation test. It is also shown
that the hardness and elastic modulus of the material can be obtained from the loading and
unloading portions of these simulated curves.

INTRODUCTION

In recent years various sophisticated thin film deposition techniques have been developed
in response to demands for better materials for high technological applications, especially
in miniaturized electronic components. These techniques, such as: sputtering, vapor depo-
sition, ion implantation, laser glazing and other modern surface modification techniques,
involve tailored control of the mechanical and structural properties of the material involved.
With respect to mechanical properties, these kinds of control depend on a trial and error
approach and little is known fundamentally about the relationships between the film
stress, hardness, yield strength, elastic modulus and the film thickness. The present work
contributes to the understanding of the sub-micrometer indentation tests that are now being
used to study the mechanical properties of these important thin films.

For over four decades, indentation hardness testing has been effectively used to deter-
mine the strength of materials very near the surface of the material. Hardness measurements
have been attractive because they can be made easily on a variety of materials. But, because
of the comparatively large indentations involved, even traditional microhardness tests are
not well suited for determining the properties of thin films with typical thicknesses in the
range of a few hundred angstroms to just a few micrometers. At present, very low load
microhardness testers[1-3], which produce indentation depths as small as a few hundred
angstroms, represent the most successful technique for studying the mechanical properties
of thin films. Although various fundamental mechanical properties appear to be obtainable
from these tests, very little effort has been made to understand the mechanics of the plastic
deformation involved in these sub-micrometer indentations. The lack of knowledge in this
area makes it difficult to determine the relative merits of various modifications that are
necessary for designing a typical thin film system. It is, therefore, important to conduct
continuum mechanics analyses in an effort to understand the underlying mechanics of these
indentation tests.

A few analytical treatments related to indentation mechanics exist in the literature.
The solution for a flat ended circular punch contacting a half space is well known[4]. Elastic
normal contact problems for layered media were analyzed by Chen and Engel[5] and
analyses of some punch problems for thin films on substrates were also given by King[6].
All of these solutions are applicable to elastic deformation only and cannot be used to
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predict the complex elastic—plastic deformation involved in a typical indentation test. A few

‘investigators[7-10] have used the finite element technique to analyze large indentations
typical of the Brinell hardness test. The same method has also been used to calculate stresses
in contact situations[l11]. Semi-empirical analyses for indentation problems have been
provided by other investigators[12—14]. Except for the work of Bourcier et al.[7], no detailed
analyses have been made for extremely small indentations, such as those produced in typical
sub-micrometer hardness tests[1, 3]. Due to the obvious mathematical complexities involved
in such analyses, the finite element method is required and has been used in this investigation.
The analysis involves a simulation of indentation tests, from which insight into the various
mechanical properties of thin films can be gained. This work represents the first part of a
more extensive theoretical research program aimed at understanding the mechanical prop-
erties of thin films on substrates. In the present study, the goals have been : (a) to demonstrate
the feasibility of modeling a typical hardness test using the finite element technique and (b)
to show how relevant basic mechanical properties can be extracted from such simulated
results.

THE FINITE ELEMENT MODEL

Sub-micrometer indentation testing permits the measurement of force-distance
relations on a very small scale; a detailed description of this can be found elsewhere[1, 3].
Simulations of these force—distance relations for the indentation of nickel, silicon and
aluminum using a rigid indenter were performed using the large strain elasto-plastic feature
of the ABAQUS finite element code[17], with uniaxial stress—strain data as input. The
quasi-nature of the process permits us to use the static analysis performed by the program.
Underlying the approach in this code is the discretization of the continuum involved ; the
indenter was considered to be perfectly rigid. Also, an important feature of this program
involves the capability to model contact between the indenter and the sample as a sliding
interface. The initial nodal gaps between the indenter and the surface of the specimen were
prescribed and the program automatically keeps track of their change and indicates any
gap closure or opening in a particular direction. These interface elements thus simulate
contact between the indenter and the specimen surface. Whenever the closure distance
between the indenter and the specimen becomes zero, contact is assumed and an external
reaction force is exerted on this material point to keep it moving along with the indenter.
Because the program calls for incremental loading and also makes use of interface elements,
the expanding contact area associated with indentation occurs naturally whenever new
interface elements come into contact.

In this analysis, the indenter and specimen are treated as bodies of revolution to avoid
the inherent three-dimensional nature of the problem of indentation with a pyramid shaped
indenter. If a pyramid indenter was used, it would have an elastic singularity at its edges
but this would affect only the stress—strain response of a few of the elements adjacent to
these edges. Thus, it is not expected to cause any noticeable difference in the load—deflection
response of the material. Although this approximation is considered to be acceptable for
the case of continuum plasticity, a three-dimensional analysis would be needed to treat
crystal plasticity. Thus, in the present treatment the pyramid indenter was approximated
by an axisymmetric cone of equal volume for a given indenter depth. The indenter and the
specimen are shown schematically in Fig. 1, along with the appropriate boundary conditions
for the problem. Symmetry properties have been used to simplify the boundary conditions.
During preliminary simulations the boundary condition on the surface on the right-hand
side of the specimen was changed from fixed radial displacements to traction free; this
change had no effect on the indentation parameters, thus showing that this boundary was
indeed remote. Because very small indentations were being simulated, the meshes near the
indenter needed to be very fine to be able to describe the deformation and stress gradients
associated with indentation with sufficient accuracy. Thus, extremely fine mesh sizes were
used under the indenter ; they became progressively coarser at distances farther away from
the indenter. Axisymmetric four node elements were used for the continuum. In order to
obtain an accurate estimate of the radius of the contact area, an extremely fine mesh
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Fig. 1. Schematics of the specimen under the indenter showing the boundary conditions.

thickness of the order of 0.02 ym had to be used along most of the indenter contact surface.
To keep the computer time within limits, a total of 461 elements including the interface
elements were used for representing the deformed material. Figure 2 represents a magnified
view of the elements near the indenter and the staircase arrangement for the other elements
at points farther away from the indenter. When two elements are connected to a singie
element in this distribution, the middle node on the common face is constrained to lic on a
straight line defined by the two corresponding end nodes.

To simulate a typical indentation process, a downward displacement (negative z-
direction in Fig. 1) was imposed on the indenter ; this causes the indenter to push into the
surface of the material. Subsequently, the indenter was given an upward displacement until
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Fig. 2. Detailed pattern of mesh distribution near the indenter showing interface elements.
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Table 1. Elastic and plastic properties of nickel, silicon and aluminum used in the analysis

Young’s Strain
modulus Poisson’s Yield stress hardening rate
Material (GPa) ratio (MPa) (MPa)
Nickel 207 0.31 350 380
Silicon 127 0.278 4410 0
Aluminum 75.9 0.33 485 146

it was free of contact with the specimen. For a given indenter displacement, the cor-
responding load determination was achieved by summing the reaction forces at the contact
node points on the indenter. The interface between the specimen and the indenter was
assumed to be frictionless since no noticeable change in the load—displacement response
was observed by using a friction coefficient of 1. The mesh thickness of 0.02 um along the
indenter contact surface was determined by finding the mesh size below which no further
significant changes in the indentation load—displacement response were observed. The
hardness was also observed to remain constant with increasing indentation depth when the
mesh was refined to this point (Figs 8 and 9).

The constitutive model for the specimen material (nickel, silicon and aluminum) was
that of an elastic—plastic von Mises material with isotropic hardening. Two separate cases
of strain hardening were considered, one with no strain hardening (i.e. the material was
assumed to be elastic—fully plastic) and the other with a linear strain hardening rate of
14/200 for the material under consideration. The material properties used in the calculations
are given in Table 1. The finite element calculations were performed using an IBM 434]
mainframe computer with run times of 15-25h for average indentation depths.

RESULTS AND DISCUSSION

Results of the load—displacement simulation are shown in Figs 3 and 4. In these plots
comparison is made between the experimental data obtained by Pethica et al.[1] for pure
nickel and silicon and the simulated response from finite element calculations. The material
properties for these simulations are given in Table 1. The agreement between our finite
element analysis and experimental results is satisfactory, thus indicating the feasibility of
using finite element analysis to describe the sub-micrometer indentation process. Slight
numerical oscillations present in the load—depth curves are caused by discontinuous contact
of the test specimen nodal points with the indenter surface. The differences between the
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Fig. 3. Comparison between the results from the present FEM analysis and those from Pethica et
al.[1] on indentation of nickel.
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Fig. 4. Comparison between the results from the present FEM analysis and those from Pethica et
al.[1] on indentation of silicon.

numerical and the experimental results may be due to differences in the actual and assumed
yield stresses and work hardening rates of the materials involved. Also, the differences could
be caused by differences between the tip geometry of the experimentally used indenter and
the perfectly sharp indenter used in our calculations. The effect of tip geometry on the
material response has been adequately discussed in Refs [1, 3].

Having shown that the finite element analysis can adequately describe the experimental
load—displacement response, we next compute the hardness and Young’s modulus from
these simulations and compare the results with the material data used as input for the
calculations. We have also analyzed two completely different types of materials ; a low yield
strength, high strain hardening material represented by aluminum and a very high yield
strength, low strain hardening material represented by silicon. Elastic moduli for the two
materials were also very different. Simulated results for these materials are given in Figs 5—
7. Strain hardening was not included in the silicon simulation (Fig. 5). For indentation of
aluminium, both cases of no strain hardening (Fig. 6) and full strain hardening (Fig. 7)
have been considered. Prescribing linear strain hardening for silicon did not produce any
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Fig. 5. Load—depth response for indentation of silicon.
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Fig. 6. Load—depth response of indentation of aluminum without strain hardening.

significant changes in the load-depth response. Unloading from three different points along
the loading curve has been performed as shown. The general unloading response is similar
to the experimentally observed response[l, 3]. As expected, silicon, with a high yield strength
to elastic modulus ratio, shows a large amount of elastic recovery upon unloading whereas
aluminum, with a low yield strength to elastic modulus ratio, shows little elastic recovery.

Hardness results

The microhardness is calculated as the load divided by projected area under the
indenter at various points on the loading curve. These hardnesses are plotted as a function
of indentation depth in Figs 8 and 9. The results show that the hardness is essentially
independent of indentation depth. At smaller indentation depths, it was necessary to use a
refined mesh size to obtain hardnesses that are independent of the depth of indentation
over the range of depth considered. These results are expected for a homogeneous material
described by a continuum based constitutive model. The calculations of hardness were
performed using the load-depth results shown in Figs 5-7 and taking the value of contact
areas directly from the FEM calculations.
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Fig. 7. Load—depth response for indentation of aluminum with strain hardening.
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Fig. 8. Hardness variation as a function of depth of indentation for aluminum with and without
strain hardening.

Determination of Young’s modulus

As reported in Ref. [3], the slope of the unloading curve can be used as a measure of the
elastic properties of the material being indented. If the contact area between the indenter
and sample remains constant during initial unloading, the elastic behavior may be modelled
as that of a flat ended cylindrical punch indenting an elastic solid. Loubet et @/.[15] adopted
the elastic solution given by Sneddon[16] and equated the projected area of contact with
the indenter to the area of the punch. Obtaining an estimate of the true projected contact
area under the indenter has been a source of some confusion because of the involvement
of both elastic and plastic displacements under the indenter. The generally accepted pro-
cedure has been to estimate this contact area from the plastic depth of indentation. But,
due to the elastic recovery of the indented material after unloading, the measured depth
does not necessarily correspond to the plastic depth. It has been suggested[1] that for a
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Fig. 9. Hardness variation as a function of depth of indentation for silicon.
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material that exhibits a large amount of elastic recovery, the best estimate of the true,
relaxed indentation depth is the depth at zero load, just before separation between the
indenter and the material occurs. For a material that exhibits only a small amount of elastic
recovery, the plastic depth can be taken as the depth at the highest load point, before
unloading begins. An alternate suggestion in Ref. [3] is that the plastic depth for all materials
is that point at which an extension of the linear unloading curve intersects the depth axis.
These various possibilities for estimating the plastic depth and the corresponding contact
area from the load—depth response are analyzed below.

Following the same analysis as proposed by Loubet ez a/.[15], but using the plastic
depth, 4,, instead of the diagonal length used by them and assuming a perfectly rigid
indenter with an ideal pyramidal geometry (having the same depth—area relationship as the
Vicker’s indenter), Ref. [3] obtained the following relationship for the elastic modulus:

(1—v?) n \ dP
E=— J (m)a W

where 4, is the plastic depth, dP/dk the slope of the unloading curve and E and v are
Young’s modulus and Poisson’s ratio, respectively. Below we use eqn (1) to estimate
Young’s modulus from the simulated load—depth curves.

The finite element results showed that for the first three points (on average) in the
unloading curve, the indenter and the sample remained in contact. This suggests that it is
valid to use eqn (1) to determine the elastic modulus of the specimen from the unloading
slope. Because the contact area can be calculated directly from the FEM results, it is not
necessary to use the plastic depth in determining the elastic modulus from the unloading
slope. Rewriting eqn (1) in terms of the projected contact area, 4, with the indenter, we

obtain
A—v») [{=n\dP
E="3 \/ <A> dn @

as an alternate expression for the elastic modulus.

With eqns (1) and (2) one can obtain the elastic modulus of the material being indented
from the unloading slope dP/dh using either the plastic depth, 4,, or the projected contact
area, 4, with the indenter. As discussed above, the plastic depth may be determined from
the intercept of the linear portion of the unloading curve on the depth axis or it may be
taken to be either the depth at maximum load or the final depth in the unloaded state. As
noted before, the projected contact area is found by knowing the radius of contact from
the FEM calculations. To obtain a good estimate of dP/ds from the simulated load-
displacement curves (Figs 5-7), a straight line was fit through the first three data points on
the unloading curves. The highest load point at which the unloading begins was included
in this fitting procedure. More points on the unloading curve with full contact between
indenter and material could be obtained by using very small increments in displacement
but at the expense of a large amount of computer time.

Table 2 summarizes various calculations of Young’s modulus for aluminum and silicon
using the methods described above. Out of the four calculated Young’s modulus values,
the first column involves the use of the flat punch model recast in terms of projected area
of contact (eqn (2)) and the others involve the use of eqn (1). The second column makes
use of the intercept of Ref. [3] to obtain the plastic depth. The third column is based on the
assumption that the plastic depth is the final depth, i.e. the depth of indentation where the
unloading curve reaches zero load value as proposed by Pethica et al.[1]. The fourth column
involves the assumption that the plastic depth is the full depth of indentation at the point
of maximum load. The purpose of these different types of calculations was to determine
the effect of these various measures of plastic depth on the determination of Young’s
modulus. As seen from these calculations, the values of Young’s modulus obtained using
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Table 2. Comparison between theoretical and calculated values of Young’s modulus

Depth
of Calculated Young’s modulus (GPa)
indentation Flat punch Extrapolated Final depth Full depth
(nm) model depth model model model
Material : silicon with no strain hardening (E = 127 GPa)
254.0 131.0 121.0 143.2 96.4
152.4 123.6 121.4 137.2 89.1
61.8 126.9 120.8 137.3 88.9
Material : aluminum with no strain hardening (£ = 75.9 GPa)
247.08 77.2 72.2 74.0 68.3
151.05 76.9 71.0 72.4 66.1
61.65 76.8 71.6 73.2 65.4
Material : aluminum with full strain hardening (E = 75.9 GPa)
252.38 77.8 72.9 73.9 67.3
149.52 77.2 71.7 74.7 67.4
61.65 76.8 71.4 72.0 65.4

the flat punch model coupled with the projected contact area from the FEM calculations
(eqn (2)) are in very good agreement with the known values of Young’s modulus for both
materials. None of the methods based on plastic depth (eqn (1)) give equally good results.
The extrapolated plastic depth model gives values that are near to but less than the known
values of elastic modulus for both materials. Values of Young’s modulus based on the final
depth model are higher than the known value for silicon and less than the known value for
aluminum. The full depth model gives values that are much less than the known values for
both materials. Considering the results for both materials, the extrapolated depth model
appears to give the best estimate of the projected contact area and the best procedure for
determining the elastic modulus from loading and unloading curves alone.

Effect of elastic and plastic properties on hardness

So far we have not discussed the separate effects of elastic and plastic properties on
the hardness of a material. Normally, the mean contact pressure under the indenter, p,,, is
related to the yield stress of the material under compression, 6, by a generalized expression
based on the deformation theory of a rigid—perfectly plastic solid[12] as

P = Coy 3

where C is a constant having a typical value close to 3. For ductile metals and other similar
materials, this relationship works well. But, indentation experiments with highly elastic
materials, such as polymers, have shown that the elastic and plastic strains associated with
indentations are of the same order of magnitude and the above relationship does not apply.
Johnson[13], using Marsh’s[18] model of the expanding spherical cavity in an elastic—
perfectly plastic solid derived a comprehensive relationship between the hardness, yield
stress, Young’s modulus and the indenter shape defined by the angle § between the indenter
and the horizontal. For the case of an incompressible material, his results simplify to

2
a—[j=§|:1+ln <~;—0_—€tan ﬂ):l @

He compared this prediction with experimental data for various kinds of materials and
showed that for an indenter with a given geometry, the hardness of a material for an elastic—
plastic material is not only a function of yield stress but also a function of the parameter
E/o,, where E is the Young’s modulus of the material.
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Fig. 10. Comparison of various experimental hardness results[13] with the predictions of Johnson’s
elastic—plastic model and the present FEM analysis.

In Fig. 10, we have compared the experimental data compiled by Johnson[13] with a
few values of the hardness obtained from the present finite element analysis. Although the
Johnson model correctly predicts the general trend in the data, it does not correlate the
data well at larger values of E/o, where the data seem to reach a plateau, with Hjo, values
of about 3. This corresponds to the value predicted by rigid plastic theory from classical
mechanics. The FEM analysis predicts an upper bound to the experimental results and also
describes the plateau behavior at large values of E/g,. A more detailed analysis of the
various predictions of the Johnson model is being made[19] and will be described elsewhere.

CONCLUSIONS

The results obtained from this study indicate that it is possible to successfully simulate
the overall load—depth response of a sub-micrometer indentation test for different types of
materials by using the finite element technique together with simple constitutive data as
program inputs. It has also been demonstrated that one can obtain Young’s modulus for
the material from the slope of the linear portion of the unloading curve in such a simulation.
This has been shown earlier in Ref. [3] and applied to actual test data. In addition, the
FEM analysis yielded a hardness curve which was more or less independent of the depth of
indentation. It is thus possible to obtain hardness values for the material from simulated
data along the loading curve. The present study also gives theoretical justification for the
use of the extrapolated depth as the best measure of the plastic depth of indentation. Finally,
it has been shown that the FEM analysis predicts the response for an elastic—plastic material
with respect to the relationship between hardness, yield stress and the Young’s modulus of
the material.
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